Abstract
This work explores the creation of an online tool where the user can simulate a Prognostics and Health Management (PHM) system, by creating and submitting a specific machine learning experimental scenario in order to predict the Remaining Useful Lifetime (RUL) of aircraft subsystems that were affected by a system fault. In this interface, the user can choose a public dataset from the proposed ones and a specific machine learning method to be applied to the dataset. After submitting the selected configuration the system runs it and the output, i.e., the predicted RUL, is presented in the form of a graph with the possibility of exporting the results in a .txt file. The suggested datasets are made of data retrieved from aircraft sensors and the proposed methods represent different alternatives for RUL prediction. There is also the possibility to choose more than one method and then graphically compare the results. Since the methods are executed remotely, the use of this tool is not computational demanding for the user. The main aim of this work is to create a simple and user-friendly interface, allowing the users to make their own experiences online, simulating a PHM system applied to a given dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.