Abstract

The paper describes a two-dimensional (2-D) sound source mapping system for a mobile robot. The robot localizes the directions of sound sources while moving and estimates the positions of sound sources using triangulation from a short time period of directional localization results. Three key components are denoted. (i) Directional localization and separation method of different pressure sound sources by combining the Delay and Sum Beam Forming (DSBF) and the Frequency Band Selection (FBS) algorithms. (ii) The design of the microphone array by beam forming simulation to increase the resolution of the localization procedure and its robustness to ambient noise. (iii) Sound position estimation by using the RAndom SAmple Consensus (RANSAC) algorithm. Then we achieved 2-D multiple sound source mapping from time-limited data with high accuracy. Applying FBS as a binary filter after DSBF improves robustness for multiple sound source localization under robotic movement. In addition, a moving sound source separation method is shown by using segments of the DSBF enhanced signal derived from the localization process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.