Abstract

In this paper, a novel method called online sequential extreme learning machine with under-sampling and over-sampling (OSELM-UO) for imbalanced Big data classification is proposed which combines the structures of under-sampling and over-sampling and applies online sequential extreme learning machine as its base model. The novel structure enables OSELM-UO performs well on both minority and majority classes and simultaneously overcomes the issues of information loss and overfitting. Moreover, when the dataset keeps growing, OSELM-UO can be applied without retraining all previous data. Experiments have been conducted for OSELM-UO and several imbalance learning methods over real-world datasets respectively under high imbalance ratio (IR) and large amount of samples and features. Through the analysis of the experimental results, OSELM-UO is shown to give the best results in various aspects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.