Abstract
Recently, broad learning system (BLS) has been introduced to solve industrial fault diagnosis problems and has achieved impressive performance. As a flat network, BLS enjoys a simple linear structure, which enables BLS to train and update the model efficiently in an incremental manner, and it potentially has better generalization capacity than deep learning methods when training data are limited. The basic BLS is a supervised learning method that requires all the training data to be labeled. However, in many practical industrial scenarios, data labels are usually difficult to obtain. Existing semisupervised variant uses manifold regularization framework to capture the information of unlabeled data, however, such a method will sacrifice the incremental learning capacity of BLS. Considering that in many practical applications, training data are sequentially generated, in this article, an online semisupervised broad learning system (OSSBLS) is proposed for fault diagnosis in these cases. The proposed method not only can efficiently construct and incrementally update the model, but also can take advantage of unlabeled data to improve the model's diagnostic performance. Experimental results on the Tennessee Eastman process and a real-world air compressor working process demonstrate the superiority of OSSBLS in terms of both diagnostic performance and time consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.