Abstract
In this paper, we propose a new feature subset evaluation method for feature selection in object tracking. According to the fact that a feature which is useless by itself could become a good one when it is used together with some other features, we propose to evaluate feature subsets as a whole for object tracking instead of scoring each feature individually and find out the most distinguishable subset for tracking. In the paper, we use a special tree to formalize the feature subset space. Then conditional entropy is used to evaluating feature subset and a simple but efficient greedy search algorithm is developed to search this tree to obtain the optimal k-feature subset quickly. Furthermore, our online k-feature subset selection method is integrated into particle filter for robust tracking. Extensive experiments demonstrate that k-feature subset selected by our method is more discriminative and thus can improve tracking performance considerably.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.