Abstract

We study the online scheduling problem on m identical parallel machines to minimize makespan, i.e., the maximum completion time of the jobs, where m is given in advance and the jobs arrive online over time. We assume that the jobs, which arrive at some nonnegative real times, are of equal-length and are restricted by chain precedence constraints. Moreover, the jobs arriving at distinct times are independent, and so, only the jobs arriving at a common time are restricted by the chain precedence constraints. In the literature, a best possible online algorithm of a competitive ratio 1.3028 is given for the case $$m=2$$ . But the problem is unaddressed for $$m\ge 3$$ . In this paper, we present a best possible online algorithm for the problem with $$m\ge 3$$ , where the algorithm has a competitive ratio of 1.3028 for $$3\le m\le 5$$ and 1.3146 for $$m\ge 6$$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.