Abstract
Due to its optimality on a single machine for the problem of minimizing average flow time, Shortest-Remaining-Processing-Time (SRPT) appears to be the most natural algorithm to consider for the problem of minimizing average flow time on multiple identical machines. It is known that SRPT achieves the best possible competitive ratio on multiple machines up to a constant factor. Using resource augmentation, SRPT is known to achieve total flow time at most that of the optimal solution when given machines of speed 2 − 1/m. Further, it is known that SRPT's competitive ratio improves as the speed increases; SRPT is s-speed 1/s-competitive when s ≥ 2--1/m.However, a gap has persisted in our understanding of SRPT. Before this work, the performance of SRPT was not known when SRPT is given (1 + e)-speed when 0 0. We complement this by showing that SRPT is (1 + e)-speed O(1/e2)-competitive for the objective of minimizing the lk-norms of flow time on m identical machines. Both of our results rely on new potential functions that capture the structure of SRPT. Our results, combined with previous work, show that SRPT is the best possible online algorithm in essentially every aspect when migration is permissible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.