Abstract

Over the past decade, GPS-enabled traffic applications such as Google Maps and Waze have become ubiquitous and have had a significant influence on billions of daily commuters’ travel patterns. A consequence of the online route suggestions of such applications, for example, via greedy routing, has often been an increase in traffic congestion since the induced travel patterns may be far from the system optimum. Spurred by the widespread impact of traffic applications on travel patterns, this work studies online traffic routing in the context of capacity-constrained parallel road networks and analyzes this problem from two perspectives. First, we perform a worst-case analysis to identify the limits of deterministic online routing. Although we find that deterministic online algorithms achieve finite, problem/instance-dependent competitive ratios in special cases, we show that for a general setting the competitive ratio is unbounded. This result motivates us to move beyond worst-case analysis. Here, we consider algorithms that exploit knowledge of past problem instances and show how to design data-driven algorithms whose performance can be quantified and formally generalized to unseen future instances. We then present numerical experiments based on an application case for the San Francisco Bay Area to evaluate the performance of the proposed data-driven algorithms compared with the greedy algorithm and two look-ahead heuristics with access to additional information on the values of time and arrival time parameters of users. Our results show that the developed data-driven algorithms outperform commonly used greedy online-routing algorithms. Furthermore, our work sheds light on the interplay between data availability and achievable solution quality. History: Accepted by Andrea Lodi, Area Editor for Design and Analysis of Algorithms–Discrete. Funding: This work was supported by National Science Foundation (NSF) Award 1830554 and by the German Research Foundation (DFG) under [Grant 449261765]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoc.2023.1275 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.