Abstract

Many prediction, decision-making, and control architectures rely on online learned Gaussian process (GP) models. However, most existing GP regression algorithms assume a single generative model, leading to poor predictive performance when the data are nonstationary, i.e., generated from multiple switching processes. Furthermore, existing methods for GP regression over nonstationary data require significant computation, do not come with provable guarantees on correctness and speed, and many only work in batch settings, making them ill-suited for real-time prediction. We present an efficient online GP framework, GP-non-Bayesian clustering (GP-NBC), which addresses these computational and theoretical issues, allowing for real-time changepoint detection and regression using GPs. Our empirical results on two real-world data sets and two synthetic data set show that GP-NBC outperforms state-of-the-art methods for nonstationary regression in terms of both regression error and computation. For example, it outperforms Dirichlet process GP clustering with Gibbs sampling by 98% in computation time reduction while the mean absolute error is comparable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.