Abstract

This study proposes an on-line predictor–corrector reentry guidance algorithm that satisfies path and no-fly zone constraints for hypersonic vehicles with a high lift-to-drag ratio. The proposed guidance algorithm can generate a feasible trajectory at each guidance cycle during the entry flight. In the longitudinal profile, numerical predictor–corrector approaches are used to predict the flight capability from current flight states to expected terminal states and to generate an on-line reference drag acceleration profile. The path constraints on heat rate, aerodynamic load, and dynamic pressure are implemented as a part of the predictor–corrector algorithm. A tracking control law is then designed to track the reference drag acceleration profile. In the lateral profile, a novel guidance algorithm is presented. The velocity azimuth angle error threshold and artificial potential field method are used to reduce heading error and to avoid the no-fly zone. Simulated results for nominal and dispersed cases show that the proposed guidance algorithm not only can avoid the no-fly zone but can also steer a typical entry vehicle along a feasible 3D trajectory that satisfies both terminal and path constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call