Abstract

In the transportation network, railway bridges are crucial for the transfer of both passengers and commodities. Railway bridges require continuous monitoring to observe their performance. A structural health monitoring system is one method for assessing the viability of a railway bridge structure. The functioning of railroad bridge structures has been extensively observed using wireless technology. This research aims to implement smart wireless sensors for monitoring the structural health of the railway bridge online in real-time during operation. Many sensor kinds were installed on the railway bridge, including strain gauges, accelerometers, linear variable displacement transducers, and proximity sensors. Geometric modeling and numerical simulation were performed to find critical frame locations on the railway bridge where the instrumentation sensors would be placed. In this study, MONITA® is employed for data acquisition modules. The MONITA® system consists of a combination of hardware and software that functions to retrieve, send, store, and process data. This paper describes the result of the establishment of this method to comprehend the performance of the steel railway bridge structure in real-time via the human-machine interface display dashboard. As a result, the monitoring system can appropriately be used to assess a structural railway bridge in real-time. This study may be helpful to practicing engineers and researchers in future studies of steel railway bridge evaluation. This could be a useful reference for future studies in implementing such systems as the railway bridge early warning system technique in detecting bridge damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call