Abstract

PurposeFillet welding is one of the most widespread types of welding in the industry, which is still carried out manually or automated by contact. This paper aims to describe an online programming system for noncontact fillet welding robots with “U”- and “L”-shaped structures, which responds to the needs of the Fourth Industrial Revolution.Design/methodology/approachIn this paper, the authors propose an online robot programming methodology that eliminates unnecessary steps traditionally performed in robotic welding, so that the operator only performs three steps to complete the welding task. First, choose the piece to weld. Then, enter the welding parameters. Finally, it sends the automatically generated program to the robot.FindingsThe system finally managed to perform the fillet welding task with the proposed method in a more efficient preparation time than the compared methods. For this, a reduced number of components was used compared to other systems: a structured light 3 D camera, two computers and a concentrator, in addition to the six-axis industrial robotic arm. The operating complexity of the system has been reduced as much as possible.Practical implicationsTo the best of the authors’ knowledge, there is no scientific or commercial evidence of an online robot programming system capable of performing a fillet welding process, simplifying the process so that it is completely transparent for the operator and framed in the Industry 4.0 paradigm. Its commercial potential lies mainly in its simple and low-cost implementation in a flexible system capable of adapting to any industrial fillet welding job and to any support that can accommodate it.Originality/valueIn this study, a robotic robust system is achieved, aligned to Industry 4.0, with a friendly, intuitive and simple interface for an operator who does not need to have knowledge of industrial robotics, allowing him to perform a fillet welding saving time and increasing productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.