Abstract
The prediction of remaining useful life (RUL) of lithium-ion batteries is an essential part of the prognostics and health management (PHM) for electric vehicles (EVs). The conventional method to estimate the RUL of batteries based on offline laboratory experiment data may give rise to a considerable amount of error by ignoring the uncertainties occurred in random charge-discharge cycles under operation. To overcome this problem, an online prognostic method based on a gamma process model was presented, and verified by using the experimental data from a set of four batteries test with random discharge recorded by National Aeronautics and Space Administration (NASA). In addition, the probability density function (PDF) and the reliability curve of the batteries were established along with the 0.95 confidence interval to reveal the statistical profile of predicted RULs. Compared to the conventional RUL prediction methods, the proposed method merely requires a small quantity of training data to achieve accurate RUL prediction for randomized usage batteries on EVs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.