Abstract
In this paper, we propose an online probabilistic activation/deactivation control method for base stations (BSs) in heterogeneous networks based on the temporal system throughput and activation states of neighbor BSs (cells). The conventional method iteratively updates the activation/deactivation states in a probabilistic manner at each BS based on the change in the observed system throughput and activation/deactivation states of that BS between past multiple consecutive discrete times. Since BS activation control increases the system throughput by improving the tradeoff between the reduction in inter-cell interference and the traffic off-loading effect, the activation of a BS whose neighbor BSs are deactivated is likely to result in improved system performance and vice versa. The proposed method newly introduces a metric, which represents the effective ratio of the activated neighbor BSs considering their transmission power and distance to the BS of interest, to the update control of the activation probability. This improves both the convergence rate of the iterative algorithm and throughput performance after convergence. Computer simulation results, in which the mobility of the user terminals is taken into account, show the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.