Abstract
Fermentative production of chlortetracycline is a complex fed-batch bioprocess. It generally takes over 90h for cultivation and is often contaminated by undesired microorganisms. Once the fermentation system is contaminated to certain extent, the product quality and yield will be seriously affected, leading to a substantial economic loss. Using information fusion based on the Dezer–Smarandache theory, self-recursive wavelet neural network and unscented kalman filter, a novel method for online prediction of contamination is developed. All state variables of culture process involving easy-to-measure and difficult-to-measure variables commonly obtained with soft-sensors present their contamination symptoms. By extracting and fusing latent information from the changing trend of each variable, integral and accurate prediction results for contamination can be achieved. This makes preventive and corrective measures be taken promptly. The field experimental results show that the method can be used to detect the contamination in time, reducing production loss and enhancing economic efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.