Abstract
The combined usage of phasor measurement units and machine learning algorithms provides the opportunity for developing response-based wide-area system integrity protection scheme against transient instability in power systems. However, only the transient stability status is usually predicted in the literature, which is not enough for real-time decision-making for response-based emergency control. In this paper, an integrated approach is proposed. The GRU-based predictor is firstly proposed for post-disturbance transient stability prediction. On this basis, a multi-task learning framework is proposed for the identification of unstable machines and also the estimation of generation shedding. Case study on the IEEE 39-bus system demonstrates that, apart from the basic task of transient stability prediction, the proposed GRU-based multi-task predictor can predict the grouping of unstable machines correctly. Moreover, based on the estimated amount of generation shedding, the generated remedial control actions can retain the synchronism of the power system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.