Abstract

The temporal changes of power and efficiency in a fuel cell (FC) stack can cause malperformance in the energy management strategy (EMS) of a FC hybrid electric vehicle. Therefore, the online estimation of these physical attributes is becoming an integral part of any EMS. This paper aims to utilize a two-step method to extract the maximum power and efficiency points of a FC system online. In this respect, an online parameter estimation technique, composed of smooth variable structure filter (SVSF) and Kalman filter (KF), is utilized in the first step to estimate the parameters of a FC semi-empirical voltage model. KF generates statistically optimal estimates for a linear, well-designed system model in the existence of Gaussian noise. However, these assumptions do not always hold in real applications and can lead to unstable estimation. A practical solution to deal with these instabilities is to enforce boundaries on the state estimates through SVSF which is based on sliding mode estimation concept. Hence, unlike the other similar studies, this paper synthesizes the robustness of SVSF with the precision of KF to enhance the characteristics estimation process of a FC stack. In the second step, the updated voltage model is utilized to extract the efficiency and power curves of the real FC system. To corroborate the potential of the proposed approach, a thorough comparison with KF, as an attested estimation method, is performed. The experimental tests on a 500-W FC stack indicate the superior performance of the SVSF-KF compared to that of KF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.