Abstract

We investigate online active learning techniques for online classification tasks. Unlike traditional supervised learning approaches, either batch or online learning, which often require to request class labels of each incoming instance, online active learning queries only a subset of informative incoming instances to update the classification model, aiming to maximize classification performance with minimal human labelling effort during the entire online learning task. In this paper, we present a new family of online active learning algorithms called Passive-Aggressive Active (PAA) learning algorithms by adapting the Passive-Aggressive algorithms in online active learning settings. Unlike conventional Perceptron-based approaches that employ only the misclassified instances for updating the model, the proposed PAA learning algorithms not only use the misclassified instances to update the classifier, but also exploit correctly classified examples with low prediction confidence. Specifically, we propose several variants of PAA algorithms to tackle three types of online learning tasks: binary classification, multi-class classification, and cost-sensitive classification. We give the mistake bounds of the proposed algorithms in theory, and conduct extensive experiments to evaluate the empirical performance of our techniques on both standard and large-scale datasets, in which the encouraging results validate the empirical effectiveness of the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.