Abstract
Current contact force models are expected to be used under different environments, where the dynamical parameter estimation becomes an important issue in accurately analyzing the overall behavior of mechanical system especially for complex contact situations. In recent years, a significant amount of research has been carried out in relation to the nonlinear inverse problems, which can be generally divided into two categories: one is the linear method and the other can be called the nonlinear one. In this paper, both methods are described and compared. The linear method is based on the Taylor series and Exponentially Weighted Recursive Least Squares (EWRLS) estimation method. Whereas, the core of the nonlinear one is the Unscented Kalman Filter (UKF). The Lankarani–Nikravesh (L–N) contact force model is employed to quantify the contact effect in this paper, since it is proven to be more consistent with the physics of contact. Some simulation examples are employed to evaluate the convergence sensitivity of these two methods to parameter initial conditions. And the comparisons under the same simulation condition between both methods indicate that the nonlinear one is more robust and can converge faster than the linear one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.