Abstract
We study online optimization in a setting where an online learner seeks to optimize a per-round hitting cost, which may be nonconvex, while incurring a movement cost when changing actions between rounds. We ask: under what general conditions is it possible for an online learner to leverage predictions of future cost functions in order to achieve near-optimal costs? Prior work has provided nearoptimal online algorithms for specific combinations of assumptions about hitting and switching costs, but no general results are known. In this work, we give two general sufficient conditions that specify a relationship between the hitting and movement costs which guarantees that a new algorithm, Synchronized Fixed Horizon Control (SFHC), achieves a 1 + O(1/w) competitive ratio, where w is the number of predictions available to the learner. Our conditions do not require the cost functions to be convex, and we also derive competitive ratio results for non-convex hitting and movement costs. Our results provide the first constant, dimension-free competitive ratio for online non-convex optimization with movement costs. We also give an example of a natural problem, Convex Body Chasing (CBC), where the sufficient conditions are not satisfied and prove that no online algorithm can have a competitive ratio that converges to 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.