Abstract

Deep learning models have advanced to the forefront of image recognition tasks, resulting in high-performing but enormous neural networks with millions to billions of parameters. Yet, deploying these models in production systems imposes considerable memory limits. Hence, the research community is increasingly aware of the need for compression strategies that can reduce the number of model parameters and their resource requirement. Current compression techniques for deep learning models have limitations in efficiency and effectiveness, indicating that more research is required to develop more efficient and practical techniques capable of balancing the trade-offs between compression rate, computational cost, and accuracy. This study proposed a multimodal method by combining multimodal Pruning and Knowledge Distillation techniques for compressing the iris recognition model, which is the size constraint for many image recognition models. To maintain accuracy while shrinking the model’s size, the models are trained, compressed, and further retrained in the downstream job. The analysis includes both fully connected and convolutional layers. Experimentally, the findings show that the proposed technique can achieve 91% accuracy, the same as the existing or original model. Besides that, the model compression can reduce the size of the model almost six times, from 529MB to 90MB, which is a significantly reduced rate. The primary outcome of this study is developing a CNN lightweight model for iris recognition technology that can be used on mobile devices and is resource constrained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.