Abstract

We consider online coordinated precoding design for downlink wireless network virtualization (WNV) in a multi-cell multiple-input multiple-output (MIMO) network with imperfect channel state information (CSI). In our WNV framework, an infrastructure provider (InP) owns each base station that is shared by several service providers (SPs) oblivious of each other. The SPs design their precoders as virtualization demands for user services, while the InP designs the actual precoding solution to meet the service demands from the SPs. Our aim is to minimize the long-term time-averaged expected precoding deviation over MIMO fading channels, subject to both per-cell long-term and short-term transmit power limits. We propose an online coordinated precoding algorithm for virtualization, which provides a fully distributed semi-closed-form precoding solution at each cell, based only on the current imperfect CSI without any CSI exchange across cells. Taking into account the two-fold impact of imperfect CSI on both the InP and the SPs, we show that our proposed algorithm is within an <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$O(\delta)$ </tex-math></inline-formula> gap from the optimum over any time horizon, where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta $ </tex-math></inline-formula> is a CSI inaccuracy indicator. Simulation results validate the performance of our proposed algorithm under two commonly used precoding techniques in a typical urban micro-cell network environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call