Abstract
We present optical emission spectroscopy (OES) as a technique for process optimization of the etch step during deep reactive ion etching of silicon. For specific process steps, the spectrum of optical plasma emission is investigated. Two specific wavelengths are identified (fluorine at 703.8 nm and CS compounds at 257.6 nm), which significantly change intensity during the etch step. Their intensity drop is used for the recognition of the passivation layer breakthrough. Thus, the net silicon etch time can be measured. This time can be used for process optimization. A structural analysis of the passivation layer shows its fragmentation during its breakthrough. The plasma–surface interaction and their correlation with the plasma emission are described. Within an application example, the passivation breakthrough is investigated in detail. For different process regimes, the residues of the fragmented passivation layer are analyzed by scanning electron microscopy. Residue densities of 14–38 µm−2 are fabricated. For silicon grass generation, the OES technique offers a versatile tool for the process optimization of the mask generating process within the first cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.