Abstract
Online monitoring of batch processes using multivariate statistical methods has attracted enormous research interests due to its practical importance. In this paper, we focus on an important issue that continues to confound online batch process monitoring—run-to-run variations that do not confirm to a normal distribution around a reference trajectory. Here, we show that a phase-based decomposition of the trajectory offers a systematic way to overcome this challenge. In our approach, phase changes are detected online using Singular points in key variables. Run-to-run variations among different instances of a phase are synchronized by using time warping. Finally, phased-based multivariate statistical process control models are used to monitor the execution of the batch and detect abnormalities. This phase-based monitoring approach is robust to run-to-run variations arising from changes in initial conditions and event timings as is illustrated using a well-known fermentation process simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.