Abstract

With modern data collection system and computers used for on-line process monitoring and fault identification in manufacturing processes, it is common to monitor more than one correlated process variables simultaneously. The main problems in most multivariate control charts (e.g., T 2 charts, MCUSUM charts, MEWMA charts) are that they cannot give direct information on which variable or subset of variables caused the out-of-control signals. A Decision Tree (DT) learning based model for bivariate process mean shift monitoring and fault identification is proposed in this paper under the assumption of constant variance-covariance matrix. Two DT classifiers based on the C5.0 algorithm are built, one for process monitoring and the other for fault identification. Simulation results show that the proposed model can not only detect the mean shifts but also give information on the variable or subset of variables that cause the out-of-control signals and its/their deviate directions. Finally a bivariate process example is presented and compared with the results of an existing model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.