Abstract


 
 
 Modern real-world engineering systems typically have hybrid dynamic behaviors that can be modeled by continuous behaviors with discrete mode transitions. These complex systems present many significant challenges for online monitoring and diagnosis, including tracking system behavior, dealing with noisy measurements and disturbances, and diagnosing different types of faults. In this paper, we propose an integrated model-based diagnosis approach that extends the traditional Dynamic Bayesian Network-based particle filter approach for tracking continuous system dynamics. A novel mode diagnoser is presented that discriminates between residuals generated by inaccurate system tracking, discrete faults, and parametric faults. An extended quantitative fault isolation and identification scheme is combined with a qualitative fault isolation scheme to identify the abrupt parametric faults. We demonstrate the effectiveness of our approach by applying it to Reverse Osmosis (RO) subsystem of the Water Recovery System (WRS) developed at the NASA Johnson Space Center for long duration human missions.
 
 

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.