Abstract

Cross-bonded metal sheath connection is applied in sectioned single-core power cables to reduce or eliminate the voltages that are induced in the sheath over long distances. However, cross-bonded cables present an opportunity as well as a challenge for online measurement and diagnosis of cable conditions. In this paper, a methodology to identify cable sheath faults through analysis of the sheath system currents in a cross-bonded cable system is presented. First, a numerical model is established to simulate the sheath currents in cross-bonded cable systems. Second, analyses of several faults, which happen frequently with serious consequences, are presented on the basis of current measurement at the link cable. Simulations of normal and fault conditions are given to determine the feasibility of fault diagnosis. A case study using field data from a cable tunnel in China considering the normal condition is presented to verify the numerical model. Results in normal condition show good consistency with field data with error less than 5%. Simulation results of fault conditions show that analysis of readings from six current sensors can distinguish different fault types and fault positions using the method proposed. Based on the analyses, criteria are established for sheath loop fault type diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call