Abstract

Intensified bioprocess development requires parallelized medium- to high-throughput experimentation with high on- and offline data density across all early scales of the development trajectory from microtiter plate via shake flask to lab-scale reactor. We developed a widespread measurement principle for intermediate scales, respirometry, into a parallelized oxygen transfer rate measurement device that could accurately record common process development-relevant effects such as acetate formation, diauxic growth, and nutrient limitations. The device was further equipped with dissolved oxygen measurement capability and sampling ports that allowed repetitive monoseptic sample withdrawal without disturbing the cultivation. Optimization of the operating parameters lead to k(L) a values of up to 160 h(-1) and corresponding oxygen transfer rates of 1 g L(-1) h(-1) for cultivation volumes of 50 mL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.