Abstract
In this paper, we investigate the optimal online configuration of episodic Markov decision processes when the space of the possible configurations is continuous. Specifically, we study the interaction between a learner (referred to as the configurator) and an agent with a fixed, unknown policy, when the learner aims to minimize her losses by choosing transition functions in online fashion. The losses may be unrelated to the agent's rewards. This problem applies to many real-world scenarios where the learner seeks to manipulate the Markov decision process to her advantage. We study both deterministic and stochastic settings, where the losses are either fixed or sampled from an unknown probability distribution. We design two algorithms whose peculiarity is to rely on occupancy measures to explore with optimism the continuous space of transition functions, achieving constant regret in deterministic settings and sublinear regret in stochastic settings, respectively. Moreover, we prove that the regret bound is tight with respect to any constant factor in deterministic settings. Finally, we compare the empiric performance of our algorithms with a baseline in synthetic experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.