Abstract

Person re-identification receives increasing attentions in computer vision due to its potential applications in video surveillance. In order to alleviate wrong matches caused by misalignment or missing features among cameras, we propose to learn a multi-view gallery of frequently appearing objects in a relatively closed environment. The gallery contains appearance models of these objects from different cameras and viewpoints. The strength of the learned appearance models lies in that they are invariant to viewpoint and illumination changes. To automatically estimate the number of frequently appearing objects in the environment and update their appearance models online, we propose a dynamic gallery learning algorithm. We specifically build up two datasets to validate the effectiveness of our approach in realistic scenarios. Comparisons with benchmark methods demonstrate promising performance in accuracy and efficiency of re-identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.