Abstract
Industrial Internet of things (IIoT), one enabler for Industry 4.0 Smart Factories, is a mission-critical and latency-sensitive application of 5G networks. Due to the stringent latency requirements in IIoT, coordinating the simultaneous transmissions of massive entities and knowing the interference they create to each other is not feasible. Additionally, due to the mobility feature of mobile robots and automated guided vehicles, the experienced channel fading may differ from the estimated one. Therefore, some uncertainties exist in IIoT networks while we decide the communication and control mechanisms. Within the context of IIoT, this paper discusses some resource allocation solutions from the perspective of Online Convex Optimization (OCO). OCO is a computationally lightweight and memory-efficient mathematical tool which tackles the optimization problems, given that the network environment is arbitrary and unknown. We first introduce the key performance indicators in IIoT networks and highlight the uncertain factors, which we may encounter while allocating the communication resources in IIoT. Then we provide an overview of main principles of OCO and present the comparison benchmarks and related metrics for performance evaluation. Moreover, we discuss the kind of resource allocation problems in IIoT that can be tackled by OCO. Finally, we summarize the advantages of applying OCO to IIoT networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.