Abstract
In this paper, we propose a novel algorithm for video bitrate adaptation in HTTP Adaptive Streaming (HAS), based on online learning. The proposed algorithm, named Learn2Adapt (L2A) , is shown to provide a robust bitrate adaptation strategy which, unlike most of the state-of-the-art techniques, does not require parameter tuning, channel model assumptions, or application-specific adjustments. These properties make it very suitable for mobile users, who typically experience fast variations in channel characteristics. Experimental results, over real 4G traffic traces, show that L2A improves on the overall Quality of Experience (QoE) and in particular the average streaming bitrate, a result obtained independently of the channel and application scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Multimedia Computing, Communications, and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.