Abstract

SHVC, the scalable extension of High Efficiency Video Coding (HEVC), uses advanced inter-layer prediction features in addition to the advanced compression tools of HEVC to improve the compression performance. Using combined features has brought us improved compression performance at the cost of huge computational complexity for the SHVC encoder. This complexity is mainly because of the the inter/intra-prediction mode search of the coding units. The focus of this study is on developing an efficient complexity reduction for quality scalability of SHVC encoder, with the intention to facilitate the adoption of SHVC for real-time applications. In this regard, first, we build a probabilistic model that uses the mode information and motion homogeneity of already encoded blocks in the enhancement layer (EL) and the base layer to predict the probabilities of all the available inter/intra modes of the to-be-coded block in the EL. Then, we propose an online-learning-based fast mode, assigning (FMA) method that uses the proposed probabilistic model to predict the mode of the to-be-coded block in the EL. Performance evaluation shows that our proposed FMA method reduces the total execution time of the SHVC encoder by 45.40% on average compared with unmodified SHVC codec while maintaining the overall video quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.