Abstract

With the widespread use of WiFi devices and the availability of channel state information (CSI), CSI-based device-free localization (DFL) has attracted lots of attention. Fingerprint-based localization methods are the primary solutions for DFL, but they are faced with the fingerprint similarity problem due to the complex environment and low bandwidth of the commercial WiFi. Meanwhile, fingerprints may change unpredictably due to multipath WiFi signal propagation in time-varying environments. To tackle these problems, this paper proposes an adaptive online learning DFL method, which adaptively updates the localization model to ensure long-term accuracy and adaptability. Specifically, the CSI signals of the target located at different reference points are first collected and transformed to discriminable fingerprints using the weights of Multilayer Online Sequence Extreme Learning Machine (ML-OSELM). After that, an online learning DFL model is built to adapt to the changes of the environment. Experimental results in a time-varying indoor environment validate the adaptability of the proposed method against environmental changes and show that our method can achieve 10% improvement over other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.