Abstract

In this paper, an online learning algorithm is proposed as sequential stochastic approximation of a regularization path converging to the regression function in reproducing kernel Hilbert spaces (RKHSs). We show that it is possible to produce the best known strong (RKHS norm) convergence rate of batch learning, through a careful choice of the gain or step size sequences, depending on regularity assumptions on the regression function. The corresponding weak (mean square distance) convergence rate is optimal in the sense that it reaches the minimax and individual lower rates in the literature. In both cases we deduce almost sure convergence, using Bernstein-type inequalities for martingales in Hilbert spaces. To achieve this we develop a bias-variance decomposition similar to the batch learning setting; the bias consists in the approximation and drift errors along the regularization path, which display the same rates of convergence, and the variance arises from the sample error analysed as a (reverse) martingale difference sequence. The rates above are obtained by an optimal trade-off between the bias and the variance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.