Abstract

Jobs in modern computing clusters have highly diverse processing durations and heterogeneous resource requirements. In this paper, we consider the problem of online job scheduling for a computing cluster comprised of multiple servers with heterogeneous computation resources, while taking the diversity of resource demands for different jobs into account. Our focus is to achieve a low overall job response time for the system (which is also referred to as the job flowtime) while providing fairness between small and large jobs. Since the job flowtime minimization problem under multiple (even homogeneous) servers are known to be NP-hard, we propose an approximation algorithm to tackle the original online scheduling problem by adopting the notion of fractional job flowtime as a surrogate objective for minimization. We apply Online Convex optimization (OCO) techniques to design the corresponding online scheduling algorithm. More importantly, we show that the dynamic fit of the online version of our approximate algorithm grows only sublinearly with respect to time and derive a bound for its dynamic regret when comparing to its offline counterpart. While the baseline version of our proposed scheduling algorithm assumes the possibilities of job preemption and job migration across different servers, we show that the extent of job preemption and migration can be well controlled by augmenting the objective function of our online convex optimization formulation with the corresponding switching costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.