Abstract

Summary We propose a debiased stochastic gradient descent algorithm for online statistical inference with high-dimensional data. Our approach combines the debiasing technique developed in high-dimensional statistics with the stochastic gradient descent algorithm. It can be used to construct confidence intervals efficiently in an online fashion. Our proposed algorithm has several appealing aspects: as a one-pass algorithm, it reduces the time complexity; in addition, each update step requires only the current data together with the previous estimate, which reduces the space complexity. We establish the asymptotic normality of the proposed estimator under mild conditions on the sparsity level of the parameter and the data distribution. Numerical experiments demonstrate that the proposed debiased stochastic gradient descent algorithm attains nominal coverage probability. Furthermore, we illustrate our method with analysis of a high-dimensional text dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.