Abstract
In this paper, we are going to propose an online radial basis function (RBF) neural network algorithm without any preprocessing step. Then a kernel principal component analysis (KPCA) is coupled with the proposed online RBF neural network algorithm. Indeed, the KPCA method is used as a preprocessing step to reduce the feature dimension which fed to the RBF neural network. Reducing memory requirements of the models makes RBF neural network training efficient and fast. These two proposed algorithms are applied, with success, for identification of a mobile robot position. The simulation results present that the used sigmoid function as a kernel, compared to other kernel functions, which gives an excellent model and a minimum mean square error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.