Abstract

Advanced internal combustion engine technologies have afforded an increase in the number of controllable variables and the ability to optimize engine operation. Values for these variables are determined during engine calibration by means of a tabular static correlation between the controllable variables and the corresponding steady-state engine operating points to achieve desirable engine performance, for example, in fuel economy, pollutant emissions, and engine acceleration. In engine use, table values are interpolated to match actual operating points. State-of-the-art calibration methods cannot guarantee continuously the optimal engine operation for the entire operating domain, especially in transient cases encountered in the driving styles of different drivers. This article presents brief theory and algorithmic implementation that make the engine an autonomous intelligent system capable of learning the required values of controllable variables in real time while operating a vehicle. The engine controller progressively perceives the driver’s driving style and eventually learns to operate in a manner that optimizes specified performance criteria. A gasoline engine model, which learns to optimize fuel economy with respect to spark ignition timing, demonstrates the approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call