Abstract

In ice cream and sorbet manufacturing small ice crystals are desired to deliver a product with a smooth texture and good palatability. This research studied the influence of the operating conditions on the ice crystal size and the draw temperature of the sorbet during the freezing process. The evolution of ice crystal size was tracked with the focused beam reflectance measurement (FBRM) technique, which uses an in situ sensor that makes it possible to monitor online the chord length distribution (CLD) of ice crystals in sorbets containing up to 40% of ice. The refrigerant fluid temperature had the most significant influence on the mean ice crystal chord length, followed by the dasher speed, whereas the mix flow rate had no significant influence. A decrease in the refrigerant fluid temperature led to a reduction in ice crystal size, due to the growth of more small ice crystals left behind on the scraped wall from previous scrapings. Increasing the dasher speed slightly reduced the mean ice crystal chord length, due to the production of new small ice nuclei by secondary nucleation. For a given refrigerant fluid temperature and dasher speed, low mix flow rates resulted in lower draw temperatures, due to the fact that the product remains in contact with the freezer wall longer. High dasher speeds warmed the product slightly, due to the dissipation of frictional energy in the product, the effect of which was in part moderated by the improvement in the heat transfer coefficient between the product and the freezer wall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call