Abstract
Knowledge of online functional brain mechanisms of locomotion is scarce due to technical limitations of traditional neuroimaging methods. Using functional Near Infrared Spectroscopy (fNIRS) we evaluated task-related changes in oxygenated hemoglobin levels (HbO2) in real-time over the pre-frontal-cortex (PFC) regions during simple (Normal Walk; NW) and attention-demanding (Walking While Talking; WWT) locomotion tasks in a large cohort of non-demented older adults. Results revealed that the assessment of task-related changes in HbO2 was internally consistent. Imposing greater demands on the attention system during locomotion resulted in robust bilateral PFC increases in HbO2 levels during WWT compared to NW and the cognitive interference tasks. Elevated PFC oxygenation levels were maintained throughout the course of WWT but not during the NW condition. Increased oxygenation levels in the PFC were related to greater stride length and better cognitive performance but not to faster gait velocity in WWT. These findings elucidate online brain mechanisms of locomotion, and confer significant implications for risk assessment and intervention for major mobility outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.