Abstract
Mapping forest disturbances using dense time series can timely identify disturbances at the subannual scale. However, these change detection methods using dense time series may be infeasible when not enough temporal observations are available. In this article, an online change detection algorithm that identifies forest disturbances at a subannual scale using spatial context from the sparse Landsat time series was proposed. First, the spatial normalized index that removed forest seasonality was prepared for establishing a simplified model instead of the harmonic model, thereby reducing the requirements for a high temporal frequency of clear observations for model initialization. Second, by using the spatial errors model to establish the simplified model, the normally distributed residual time series that removed the spatial autocorrelation were obtained. Third, the spatial statistic <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula> time series transformed from residual time series within a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$3\times3$ </tex-math></inline-formula> spatial window were subsequently subjected to the exponentially weighted moving average <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula> chart (EWMA-t), which is a statistical process control chart for a short cycle corresponding to sparse Landsat time series. Fourth, disturbed pixels were labeled if the chart values persistently deviated from the control limits of the chart. The proposed algorithm was applied to a subtropical forest with low Landsat data availability and yielded an overall accuracy of 86% in the spatial domain and temporal accuracy of 93.7%, achieving accurate and timely identification of forest disturbances. The proposed method called the EWMA-t change detection (EWMATCD) algorithm provides an alternative for disturbance detection at the subannual scale in regions with low data availability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.