Abstract

The recent progression and Green Revolution (approx. between the 1990s-2010s) in agriculture of Bangladesh resulted in an increase of total production despite yield-gap to ensure food security. But agriculture in Bangladesh is still backed-up by higher use of inputs (agrochemicals-fertilizers, pesticides; modern varieties, irrigation etc.) and inversion tillage. This conventional agrochemical-based smallholder agriculture may lead to soil and environmental degradation, soil acidification, and a decline in soil fertility. Therefore, it is significant to optimize input application in intensive agriculture, especially fertilizers. This paper introduces the potential online facilities of generating online fertilizer recommendations for smallholder farmers in Bangladesh to ensure proper usage of fertilizers and enable sustainable agricultural production. We also highlighted how the usage of fertilizers increased with an increase in total production over time. But the sustainability of production in the years to come still remain challenging. With the aim of sustainable crop production, reduction in the misuse of fertilizers and reduction of input cost by optimizing the present pattern of excessive fertilizer application, the Soil Resource Development Institute (SRDI) provides location-specific fertilizer recommendation through both the manual and soil test based interpretation of plant nutrients: soil database in Upzazila Nirdeshika and static laboratory soil analysis. Recently, SRDI developed web-based software named Online Fertilizer Recommendation System (OFRS). The system is capable of generating location-specific fertilizer recommendations for selected crops by analyzing the national soil database developed by this governmental institute. The software requires farmer field location, respective soil and land type, and crop type and variety information to generate crop-specific instant fertilizer recommendation. It was observed that by using fertilizer according to the recommended dose calculated on the basis of soil test values, farmers could harvest approx. 7-22% higher yield of different crops over usual farmers practice. If this system can be popularized and disseminated by effective agricultural extension, this would immensely contribute to the promotion of precision agriculture, input cost reduction and it would certainly enable us to optimize fertilizer application by the smallholder farmers in Bangladesh.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call