Abstract
This paper proposes a neural network-based actuator fault detection scheme for four-wheeled skid-steered unmanned ground vehicles (UGV). The neural network approach is first validated on vehicle dynamics simulations. Then, it is tailored for the experimental setup. Experiments involve a motion tracking system, Husarion Rosbot 2.0 UGV with associated network control systems. For experimental work, the disturbance is intentionally induced by augmenting wheels with a bump. Network size optimization is also carried out so that computing resource is saved without degrading detecting accuracy too much. The resulting network exhibit fault detection and isolation accuracy over 97% of the test data. A scenario is experimentally illustrated where a fault occurs, is detected, and tracking control is modified to continue operation in the presence of an actuator fault.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.