Abstract

Organic photoelectric materials have showing a wide application prospect in the fields of energy, environment, information and biology because of their unique advantages. However, it is still not clear for us to understand some basic photo-physical processes (i.e. energy transfer, charge transfer, charge separation and recombination, etc.), which has affected the performance of materials and devices. This is very incompatible with the rapidly growing demand of the organic photoelectric materials and devices, and it has been one of the core problems that constraints the further applications of organic photoelectric materials and devices. The lack of the necessary systems and means is a major reason. Thus, it is a very necessary urgent task to develop new methods and technologies to evaluate the photo-physical properties of organic photoelectric materials and equipment systems. In this paper, an on-line research system for photo-physical properties is established to detect the intrinsic character of the organic photoelectric materials and devices, which integrates the fabrication instrument of the film materials and devices with the online measuring equipment combing with the high vacuum technology and the steady state transient spectrum measurement. A standard OLED device was fabricated and the electrluminescence spectra, current density, brightness, current efficiency and the power efficiency were got using this system avoiding the affect of the air and water. The results indict this system not only plays an important promoting role for the theoretical research of organic photoelectric materials and devices, but also helps improving the research level of organic photoelectric materials and devices. This work is expected to produce some potential innovating results with the international advanced level and make contributions to needs of national strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.