Abstract

Accurate estimation of power capacity is critical to ensure battery safety margins and optimize energy utilization. Power capacity estimators based on online identified equivalent circuit model have been widely investigated due to the high accuracy and affordable computing cost. However, the impact of noise corruption which is common in practice on such estimators has never been investigated. This paper scrutinizes the effect of noises on model identification, state of charge (SOC) and power capacity estimation. An online model identification method based on adaptive forgetting recursive total least squares (AF-RTLS) is proposed to compensate the noise effect and attenuate the identification bias of model parameters. A Luenberger observer is further used in combination with the AF-RTLS to estimate the SOC in real time. Leveraging the estimated model parameters and SOC, a multiconstraint analytical method is proposed to online estimate the power capacity. Simulation and experimental results verify that the proposed method is superior in terms of estimation accuracy and the robustness to noise corruption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.