Abstract
As a standard method for noise analysis of fiber optic gyro (FOG), Allan variance has too large offline computational burden and data storages to be applied to online estimation. To overcome the barriers, the state space model is firstly established for FOG. Then the Sage-husa adaptive Kalman filter (SHAKF) is introduced in this field. Through recursive calculation of measurement noise covariance matrix, SHAKF can avoid the storage of large amounts of history data. However, the precision and stability of this method are still the primary matters that needed to be addressed. Based on this point, a new online method for estimation of the coefficient of angular random walk is proposed. In the method, estimator of measurement noise is constructed by the recursive form of Allan variance at the shortest sampling time. Then the estimator is embedded into the SHAKF framework resulting in a new adaptive filter. The estimations of measurement noise variance and Kalman filter are independent of each other in this method. Therefore, it can address the problem of filtering divergence and precision degrading effectively. Test results of both digital simulation and experimental data of FOG verify the validity and feasibility of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.