Abstract
A battery model that is suitable for real-time State-of-Charge (SOC) estimation of a Lithium-Ion battery is presented in this paper. The battery open circuit voltage (OCV) as a function of SOC is described by an adaptation of the Nernst equation. The analytical representation can facilitate Kalman filtering or observer-based SOC estimation methods. A zero-state hysteresis correction term is used to depict the hysteresis effect of the battery. A parallel resistance-capacitance (RC) network is used to depict the relaxation effect of the battery. A linear discrete-time formulation of the battery model is derived. A recursive least squares algorithm with forgetting is applied to implement the online parameter calibration. Validation results show that the calibrated model can accurately simulate the dynamic voltage behavior of the Lithium-Ion battery for two different experimental data sets.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.