Abstract
Functional data analysis has attracted considerable interest and is facing new challenges, one of which is the increasingly available data in a streaming manner. In this article we develop an online nonparametric method to dynamically update the estimates of mean and covariance functions for functional data. The kernel-type estimates can be decomposed into two sufficient statistics depending on the data-driven bandwidths. We propose to approximate the future optimal bandwidths by a sequence of dynamically changing candidates and combine the corresponding statistics across blocks to form the updated estimation. The proposed online method is easy to compute based on the stored sufficient statistics and the current data block. We derive the asymptotic normality and, more importantly, the relative efficiency lower bounds of the online estimates of mean and covariance functions. This provides insight into the relationship between estimation accuracy and computational cost driven by the length of candidate bandwidth sequence. Simulations and real data examples are provided to support such findings. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.