Abstract

Effective monitoring of cerebral ascorbate following intravenous antioxidant treatment is of great importance in evaluating the antioxidant efficiency for neuroprotection because ascorbate is closely related to a series of ischemia-induced neuropathological processes. This study demonstrates the validity of an online electrochemical system (OECS) for ascorbate detection as a platform for in vivo evaluation of neuroprotective efficiency of antioxidants by studying the dynamic change of hippocampal ascorbate during the acute period of cerebral ischemia and its responses to intravenous administration of antioxidants including ascorbate and glutathione (GSH). The OECS consists of a selective electrochemical detector made of a thin-layer electrochemical flow cell integrated with in vivo microdialysis. With such a system, the basal level of hippocampal ascorbate is determined to be 5.18 ± 0.60 μM (n = 20). This level is increased by 10 min of two-vessel occlusion (2-VO) ischemia treatment and reaches 11.51 ± 3.43 μM (n = 5) at the time point of 60 min after the ischemia. The 2-VO ischemia-induced hippocampal ascorbate increase is obviously attenuated by immediate intravenous administration of ascorbate (2.94 g/kg) or glutathione (5.12 g/kg) within 10 min after ischemia and the ascorbate level remains to be 3.75 ± 1.66 μM (n = 4) and 5.30 ± 0.79 μM (n = 5), respectively, at the time point of 60 min after ischemia. To confirm if the attenuated hippocampal ascorbate increase is attributed to the antioxidant-induced oxidative stress alleviation, we further study the immunoreactivity of 8-hydroxy-2-deoxyguanosine (8-OHdG) in the ischemic hippocampus and find that the 8-OHdG immunoreactivity is decreased by the administration of ascorbate or GSH as compared to the ischemic brain without antioxidant treatment. These results substantially demonstrate that the OECS for ascorbate detection could be potentially used as a platform for evaluating the efficiency of antioxidant neuroprotection in cerebral ischemia treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call